The Principal SO ( 1 , 2 ) Subalgebra of a Hyperbolic

نویسنده

  • H. Nicolai
چکیده

The analog of the principal SO(3) subalgebra of a finite dimensional simple Lie algebra can be defined for any hyperbolic Kac Moody algebra g(A) associated with a symmetrizable Cartan matrix A, and coincides with the non-compact group SO(1, 2). We exhibit the decomposition of g(A) into representations of SO(1, 2); with the exception of the adjoint SO(1, 2) algebra itself, all of these representations are unitary. We compute the Casimir eigenvalues; the associated “exponents” are complex and non-integer. July 2001 ∗Work supported in part by the European Union under Contract No. HPRN-CT-2000-0013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Principal SO ( 1 , 2 ) Subalgebra of a Hyperbolic Kac

The analog of the principal SO(3) subalgebra of a finite dimensional simple Lie algebra can be defined for any hyperbolic Kac Moody algebra g(A) associated with a symmetrizable Cartan matrix A, and coincides with the non-compact algebra SO(1, 2). We exhibit the decomposition of g(A) into representations of SO(1, 2); with the exception of the adjoint SO(1, 2) algebra itself, all of these represe...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

ar X iv : m at h / 03 01 08 6 v 1 [ m at h . A G ] 9 J an 2 00 3 Maximal rank root subsystems of hyperbolic root systems

A Kac-Moody algebra is called hyperbolic if it corresponds to a generalized Cartan matrix of hyperbolic type. We study root subsystems of root systems of hyperbolic algebras. In this paper, we classify maximal rank regular hyperbolic subalgebras of hyperbolic Kac-Moody algebras. Introduction A generalized Cartan matrix A is called a matrix of hyperbolic type if it is indecomposable symmetrizabl...

متن کامل

The principal element of a Frobenius Lie algebra

A finite dimensional Lie algebra f is Frobenius if there is a linear Frobenius functional F : f→ C such that the skew bilinear form BF defined by BF (x, y) = F ([x, y]) is non-degenerate. The principal element of f is then the unique element F̂ such that F (x) = F ([F̂ , x]); it depends on the choice of functional. However, if f is a subalgebra of a simple Lie algebra g and not an ideal of any la...

متن کامل

E 10 and SO ( 9 , 9 ) invariant supergravity

We show that (massive) D = 10 type IIA supergravity possesses a hidden rigid D 9 ≡ SO(9, 9) symmetry and a hidden local SO(9) × SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008